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Abstract
Purpose – The purpose of this paper is to present the development of a Matlab/Simulink-based simulation environment for the design and testing of
indirect and direct adaptive flight control laws with fault tolerant capabilities to deal with the occurrence of actuator and sensor failures.
Design/methodology/approach – The simulation environment features a modular architecture and a detailed graphical user interface for simulation
scenario set-up. Indirect adaptive flight control laws are implemented based on an optimal control design and frequency domain-based online
parameter estimation. Direct adaptive flight control laws consist of non-linear dynamic inversion performed at a reference nominal flight condition
augmented with artificial neural networks (NNs) to compensate for inversion errors and abnormal flight conditions following the occurrence of actuator
or sensor failures. Failure detection, identification, and accommodation schemes relying on neural estimators are developed and implemented.
Findings – The simulation environment provides a valuable platform for the evaluation and validation of fault-tolerant flight control laws.
Research limitations/implications – The modularity of the simulation package allows rapid reconfiguration of control laws, aircraft model, and detection
schemes. This flexibility allows the investigation of various design issues such as: the selection of control laws architecture (including the type of the neural
augmentation), the tuning of NN parameters, the selection of parameter identification techniques, the effects of anti-control saturation techniques, the
selection and the tuning of the control allocation scheme, as well as the selection and tuning of the failure detection and identification schemes.
Originality/value – The novelty of this research efforts resides in the development and the integration of a comprehensive simulation environment
allowing a very detailed validation of a number of control laws for the purpose of verifying the performance of actuator and sensor failure detection,
identification, and accommodation schemes.
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1. Introduction

Extensive research efforts have been conducted in recent years

toward the design and the development of intelligent flight

control laws able of handling failures and malfunctions of

actuators and sensors. Within these efforts a variety of

adaptive flight control methodologies have been developed

(Steinberg, 1999). Adaptive flight control can be conceptually

categorized as indirect, direct, and hybrid. Indirect

approaches (Hageman et al., 2003; Monaco et al., 2004;

Boskovic et al., 2001) rely on real-time parameter

identification (PID) for parameter adaptation followed by

the reconfiguration of the control laws. Direct approaches

(Calise and Sharma, 2000; Kaneshige et al., 2000;

Krishnakumar et al., 2003; Williams-Hayes, 2005) use

instead measurable states and tracking errors for adaptation

and compensation purposes. Finally, the more recently

introduced hybrid adaptive control methods (Nguyen et al.,

2006, 2007) combine elements of both indirect and direct

methods.

The challenging task of developing a comprehensive,

integrated solution throughout the entire flight envelope to

the problem of fault-tolerant flight control in the presence of

actuator and sensor failures requires an extensive simulation

support. A simulation environment for the design, testing,

and evaluation of indirect and direct adaptive flight control

laws with fault-tolerant capabilities has been developed at

West Virginia University (WVU) in support of the NASA

Intelligent Flight Control System (IFCS) program (Boeing,

1999; Williams-Hayes, 2005). The objective of this paper is to

outline the design and the development of the WVU IFCS

Simulator.
The following main features are available within the

simulation environment:
. selection of indirect or direct adaptive control approaches;
. selection of different PID methods within the indirect

approach;
. selection of different neural augmentations within the

direct approach;
. selection of different failure scenarios including selection

of the failed component, type of failure, time of

occurrence, and failure magnitude; and
. selection of simulation inputs/outputs.

2. General architecture of the simulation
environment

Thedesign of theWVUIFCSSimulatorwas aimed at providing

a high portability, versatile, and flexible tool to address a variety
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of issues related to the research, development, and design of

adaptive fault-tolerant flight control systems. The

computational environment of choice was Matlabw and

Simulinkw. The flight dynamics and control (FDC) toolbox

(Rauw, 1998) provides the general framework for solving the

equations of motion, including atmospheric turbulence. For

graphic display and pilot interaction, the dynamic model is

interfaced with the aviator visual design simulator (AVDS)

simulation package (Rassmussen, 2000). The aircraft dynamic

model can be flown using a joystick or a set of pre-recorded

command time histories. User-friendly graphical user interface

(GUI) menus are used to set the conditions for the simulation

scenarios.
The general structure of the WVU IFCS Simulator includes

five major modules:
1 aircraft model module;
2 control system module;
3 actuator and sensor failure model;
4 failure detection and identification (FDI) schemes; and
5 user interface.

The general block diagram outlining the main modules and

their interactions is shown in Figure 1.

3. Aircraft model module

The aircraft model module includes three major components:

the wind and turbulence model, the aircraft dynamic

equations of motion, and the aerodynamic database. The

FDC toolbox was used to implement the Dryden model of

turbulence and constant wind of pre-determined direction

and magnitude. The FDC toolbox “Equations of motion

solver” was modified to accommodate the computation of

aerodynamic forces and moments for each control surface.

This specific feature is necessary for the process of modeling
the actuator failures. The aerodynamic database is structured
with a number of look-up tables, which are functions of one or
more dynamic variables. As an alternative, pre-trained neural
networks (PTNN) acting as non-linear interpolators can be
used instead.
The aerodynamic model implemented within the IFCS

project was derived from a non-linear model of a high-
performancemilitary aircraft distributed byNASA to academic
institutions in 1990 within a student design competition
(Antoniewicz et al., 1988). This generic model was customized
through the addition of the aerodynamics modeling of canard
surfaces for the purpose of simulating the NASA IFCS F-15
research aircraft. The control laws generate commands for
the differential canard, collective and differential stabilator,
differential aileron, and rudder. The look-up tables were
divided to represent the aerodynamic contributions from
individual control surfaces – including dual rudder – to
accommodate the modeling of actuator failures.

4. Control system module

4.1 Indirect adaptive control laws

The indirect adaptive control laws consist of two parts. The
first part determines the commands based on parameters
such as the aircraft stability and control derivatives using
one of several control design techniques. The baseline
implementation within WVU IFCS Simulator relies on
the stochastic optimal feedforward and feedback technique
(SOFFT) (Halyo et al., 1992). This set of control laws has
shown to provide desirable handling qualities at nominal flight
conditions while retaining good performance at post-failure
conditions thanks to its robustness properties (Campa et al.,
2004).

Figure 1 General architecture of the WVU IFCS simulation environment
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The feed forward component of the SOFFT controller is

designed based on an explicit command model following

approach. The resulting structure for the feed forward

component is given by:

�u ¼ Kx �xþ Kz �zþ Ku �uz; ð1Þ

where �x and �z are the state vectors of the plant and command

models, respectively, and �uz is the input to the command

model.
The design of the feedback control is performed

independently using a standard output feedback LQR

synthesis on the feed forward plant model leading eventually

to the computation of the output feedback gain matrix Ky

(Campa et al., 2004) such that:

�u ¼ Ky �y; ð2Þ

where output vector �y includes lateral and vertical

accelerations and angular rates.
Two versions of the controller have been implemented by

WVU researchers: a decoupled SOFFT version (that is

separate longitudinal and lateral-directional SOFFT

controllers) and a full (longitudinal þ lateral directional)

version. The decoupled version is less computationally

demanding and generates global commands, that is

collective and differential deflections. The coupled version

involves instead larger matrices; therefore, it is

computationally more complex. It generates commands for

individual control surface deflections (left and right stabilator,

etc.) and hence is expected to handle better the cross-

coupling after the occurrence of certain types of failures.
The second part of the controller updates the baseline

parameters while the aircraft is moving throughout the flight

envelope and/or abnormal flight conditions occur, such as

actuator or sensor failures. The updating of the stability and

control derivatives is performed through online PID

techniques. A frequency domain approach – called the

Fourier transform regression (FTR) method (Morelli, 1999)

– was implemented within the WVU IFCS Simulator due to

its very good performance and its suitability for online

applications (Napolitano et al., 2001).
The parameters to be estimated can be expressed either

in the time domain or in the frequency domain leading, in

general, to different levels of accuracy in the results

(Perhinschi et al., 2002b). The purpose of the PID

algorithm is eventually to provide state space system

matrices of the controlled plant (aircraft) that would allow

updating the parameters of the SOFFT controller. In

general, it is possible to identify directly the state space

system matrices A, B, C and D (matrix approach) or to

evaluate first the dimensionless stability and control

derivatives (derivatives approach) and then use these

values to compute the state space system matrices. The

original PID scheme has been modified by the authors to

accommodate any combination of the alternatives described

above, resulting in four possibilities subject to user’s choice

(Perhinschi et al., 2002b).
For any of these versions, depending on the flight

conditions and scenario, the user can select to estimate up

to 67 stability and control derivatives (including derivatives

with respect to differential, global and individual – left and

right – control surface deflection). A simpler version with

a reduced number (13) of derivatives to be estimated is also

implemented.
The updating of the SOFFT controller parameters from the

PID process is triggered only when specific convergence

criteria of the PID process are met. These criteria are based

on the time histories of the estimates and the standard

deviations of the estimation errors as computed using the

FTR algorithm (Morelli, 1999). The convergence criteria

require that the time histories stay within a given bound

around the average for a specified time window. The width of

the bound and that of the time window are imposed by the

user. The user can also select between convergence criteria for

the aerodynamic parameters (that is any of the 67 stability and

control derivatives), for the standard deviation of the

estimation error for each of the parameters, or both

(Perhinschi et al., 2002a). The updating of the SOFFT

controller parameters can also be performed using an online

neural network (OLNN), which in turn is trained using

the output of the PID process as long as the convergence

conditions are met.
The block diagram of the indirect adaptive control laws is

shown in Figure 2. Note that the “Derivative Update” block

includes the OLNN and the PID convergence test.

4.2 Direct adaptive control laws

The direct adaptive control laws – as shown in Figure 3 – use

a “model following” architecture based on non-linear

dynamic inversion (NLDI) augmented with artificial neural

networks (NNs). This architecture has shown capabilities for

compensating tracking errors while internal parameters

including the NN gains and output remain bounded (Calise

and Sharma, 2000).
Within the NLDI control laws, pilot stick and pedal

displacements are first converted into angular rate

commands. Next, first and second order reference models

are used to determine the desired aircraft response in terms

of angular rates and their derivatives such that Level 1

handling qualities are ensured (US Department of Defense,

1980). The tracking errors with respect to these desired

angular rates are used to provide proportional, integral, and

derivative compensation. Online learning NNs generate

augmentation commands to compensate for inversion

errors. Pseudo-controls in terms of angular acceleration

commands ð_pc; _qc; _rcÞ are computed based on pilot input,

tracking error compensation, and NN output and used to

obtain, through NLDI, generic moment producing

deflections on the three axes:

dacom

decom

drcom

2
664

3
775 ¼ B21

_pc 2 L1

_qc 2 M1

_rc 2 N1

2
664

3
775; ð3Þ

L1, M1 and N1 are the non-linear terms of the moment

equations and B is the state space system control matrix

computed at one particular flight condition. Finally, the

control surface actual deflections are computed from dacom
,

decom , drcom according to a control allocation algorithm. First

and second order actuator dynamics models are also

included. The elements of matrix B can be kept constant

or can be updated using look-up tables or PTNNs

(Perhinschi et al., 2004).
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Three different types of online learning NNs have

been implemented within the WVU IFCS Simulator: the

extended minimal resource allocation network – EMRAN

(Lu et al., 2000), SigmaPi (Shin and Ghosh, 1991), and the

single hidden layer – SHL NN (Calise et al., 1998).
The EMRAN is an improved radial basis function network

featuring a growing and pruning mechanism allowing the

allocation of additional neurons in regions of the state space

where the mapping accuracy is poor while avoiding

the excessive growth of the network. Only the parameters of

the most activated neurons are updated; therefore, the

computational effort is minimized for this class of neural

augmentation. For Gaussian basis functions, the estimate is

computed with the expression:

ŷðx; uÞ ¼
XM
i¼1

wie
jx2mi j2=2s2

i ; ð4Þ

where x is the input vector, u is the set of parameters to be

tuned by the learning algorithm including the weight w, the

Gaussian center positions m, and the variances s. A new

neuron is initiated if three distinct criteria are simultaneously

satisfied: the estimation error, the windowed estimation error,

and the distance from the input to the nearest center must

be larger than selected thresholds. When one of the criteria

is not met, the tuning parameters are updated using the

relationship:

uðk þ 1Þ ¼ uðkÞ2 h
›ŷðkÞ
›uðkÞ

����
ðkÞ

· eðkÞ; ð5Þ

where e(k) is the estimation error and h is the learning rate.
The SigmaPi NN is equivalent to an adaptive polynomial

mapping. Inputs to the networks are pseudo control

acceleration commands, bias terms, and sensor feedback.

For each channel, a first neural layer output {ci} is computed

as functions of inputs and previous-step NN outputs. Next,

these variables are multiplied to each other and eventually the

output of the NN is computed as the weighted sum of these

products:

UNN ¼ wTf ð{ci}Þ; ð6Þ

where f is computed from the intermediate outputs {ci} using

a nested Kronecker product. The network weights are

determined using the following adaptation law based on a

modified delta rule:

_w ¼ 2GðUe · f þ LjUejwÞ; ð7Þ

G and L are user selected specific gains.

Figure 2 Block diagram of the indirect adaptive control laws
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The SHL NN is using a classic sigmoid activation function

of the form:

sðjÞ ¼ 1

1þ e2aj
: ð8Þ

The output of the network is given by the relationship:

yi ¼
Xm

j¼1

wijs
Xn

k¼1

vjkxk þ uvj

 !
þ uwi

" #
; i ¼ 1; 2; . . . ; p; ð9Þ

where W ¼ {wij} are the interconnection weights between the

hidden and the output layer, V ¼ {vjk} are the

interconnection weights between the input and the hidden

layer, and uvj, uwi are bias terms. Based on a Lyapunov

analysis, boundedness of the weights and the output of the

NN is ensured provided the updating laws are given by:

_W ¼ 2gW ðs2 s0VTxÞeTx þ lW kexkW
� �

_V ¼ 2gV xeTx WTsþ lVkexkV
� �

;
ð10Þ

where ex are state errors and gW ; gV ; lW ; lV are design

parameters (learning rates).

4.3 Failure accommodation
4.3.1 Actuator failure accommodation
Both the indirect and the direct adaptive control laws have

inherent accommodation capabilities to deal with the

occurrence of actuator failures. An actuator failure induces

abrupt changes in the dynamic characteristics of the system,

which are equivalent to changes of the stability and control

derivatives. The PID process, as part of the indirect adaptive

control laws, has the objective to detect such changes and to

update the baseline parameters. In other words, following a

failure, the controlled plant changes but so do the control

laws. The direct adaptive control laws implemented within the

WVU simulation environment are based on NLDI with

parameters at one reference flight condition. Errors may occur

from three sources: modeling errors, errors due to different

flight conditions as the aircraft moves within the flight

envelope, and errors due to dynamic changes following

actuator failures. These errors are expected to be cancelled by

additional commands generated by artificial NNs. The online

learning NNs compensate for modeling errors and effects of

actuator failures while the PTNNs compensate for departure

from reference flight conditions.

4.3.2 Sensor failure accommodation
The accommodation for sensor failures is accomplished in the

same way for both categories of control laws. Although,

failures of a larger variety of sensors have been implemented,

the failure accommodation scheme only addresses failures of

the angular rates sensors. On each channel, online learning

NNs are used to generate estimates of the angular rates from

inputs including angle of attack, sideslip angle, control surface

deflections, and off-axis angular rates. These NNs are part of

a sensor failure detection scheme that will be described in

more detail in Section 6. Once a sensor failure has been

identified, the respective NN stops learning and its output is

fed into the control laws replacing the output of the faulty

sensor.

5. Actuator and sensor failure modeling

5.1 Actuator failure modeling

Two types of control surface failure have been modeled and

implemented within the simulation environment. The first

failure type corresponds to an actuator mechanism failure and

results in a locked surface; in fact, at the failure occurrence,

the control surface remains fixed in the current or in a user

prescribed position. The second failure type corresponds to a

physical destruction and/or deformation of the control

surface. It consists of a deterioration of the aerodynamic

“efficiency” of the control surface starting at the occurrence

of the failure. The user can select different failure parameters

such as type, occurrence time, position, and magnitude. Any

of the individual eight control surfaces of the baseline

aircraft – which features canards and dual fin rudder – may

be subjected to a failure, that is left or right stabilators,

ailerons, canards, and rudders.
A failure involving a blockage of the control surface at a

fixed deflection does not alter the aerodynamic properties of

the control surface. However, each surface in a pair (left and

right) will have different deflections and the resulting

moments and forces must be computed individually.

Therefore, the aerodynamic look-up tables must be divided

such that the contributions of each individual control surface

are isolated.
A control failure that involves physical destruction of the

control surface may alter the aerodynamic properties in

manners that can be both qualitative (affecting the nature of

the aerodynamic phenomena involved) and quantitative

(affecting the magnitude of characteristic parameters). In

modeling this type of failure, it was assumed that the

alteration of aerodynamic properties is such that the forces

and moments generated by the control surface after the failure

differ from those before the failure by a proportional factor

ð�sdÞ affecting an efficiency parameter Euk
; k ¼ 1; . . . ;m, with

m the total number of control surfaces.
Let the aerodynamic forces and moments be expressed as

functions of the aircraft states x, their derivatives, and the

inputs u as:

FM ¼ �fð�x; _�x; �uÞ: ð11Þ

Through appropriate manipulation of the aerodynamic

models, the forces and moments can be expressed by

separating various contributions:

FM ¼ �fx WBð�x; _�xÞ þ �fxCð�x; _�xÞ þ �fxuð�x; _�x; �uÞ þ �fuð �uÞ; ð12Þ

where �fx WB represents the contribution of the wing and

fuselage to the forces and moments while �fxC; �fxu; and �fu
represent the contribution of the control surfaces.

Furthermore, the contributions from the m control surfaces

can be expressed as:

FM ¼ �fx WBð�x; _�xÞ þ
Xm

k¼1

ð�fxCk
ð�x; _�x;Euk

Þ þ �fxuð�x; _�x; uk;Euk
Þ

þ �fuðuk;Euk
ÞÞ;

ð13Þ

where Euk
are efficiency parameters that must be defined/

identified for each control surface. For example, in the case of

the elevator or stabilator, the efficiency parameters are
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selected to be the derivatives of the aerodynamic normal force

with respect to left and right elevator deflection, respectively,
CZdeL

and CZdeR
.

After a control failure involving the physical destruction of
the control surface the expression of the forces and moments
acting on the aircraft can be expressed using:

FM ¼ �fx WBð�x; _�xÞ þ
Xm

k¼1

ð�fxCk
ð�x; _�x; sdk

Euk
Þ

þ �fxuð�x; _�x; uk; sdk
Euk

Þ þ �fuðuk; sdk
Euk

ÞÞ;
ð14Þ

where the surface damage parameter sd models the magnitude
of the failure through the ratio between the efficiency
parameter after and before the failure occurring moment:

sdk
¼ ðEuk

ÞAfterFailure
ðEuk

ÞBeforeFailure
: ð15Þ

Therefore, sd [ ½0; 1�, with sd ¼ 1 for the “no failure” case
and sd ¼ 0 for a failure involving a completely missing surface
or a complete loss of “efficiency”. The terms �fxCk

; �fxu and �fu
in equation (14) are all affected by the failure. These terms
are expressed in terms of stability and control derivatives,
which in turn depend on the efficiency parameters. Finally,
the separation of the contributions of the control surfaces (left
and right) to the derivatives allows the computation of forces
and moments at post-failure conditions as functions of the
efficiency parameters. More details on the general modeling
of the actuator failures are presented by Perhinschi et al.
(2006a).

5.2 Sensor failure modeling

All the sensors that are typically used in the control laws
feedback, such as angular rate, aerodynamic angles of attack,
altitude, and speed sensors have been first modeled as simple
first order systems:

saðsÞ ¼
1

tss þ 1
xðsÞ; ð16Þ

where (sa) is a noiseless sensor output and x is the true
output as it results from the mathematical model of the
aircraft.
The sensor modeling, to include various types of failure,

will consider the following general expression for the
measurement:

smðtÞ ¼ max½minð �KsðtÞ ·saðtÞ þ �sbðtÞ
þ �KdðtÞ · ðt 2 tf Þ;smax Þ;smin � þ �KnðtÞ ·snðtÞ;

ð17Þ

where, �Ks; �Kd ; �Kn; and �sb are, respectively, a sensor output
scaling factor, a drift factor, a noise amplifier, and a bias. In
general, the sensor output and the noise scaling factors are
defined by the following relationship, where tf is the moment

of failure occurrence:

�KiðtÞ ¼
1 for t , tf

Ki for t $ tf

(
; i ¼ s or n: ð18Þ

The drift factor is defined as:

�KdðtÞ ¼
0 for t , tf

Kd for t $ tf

(
ð19Þ

The bias of the sensor output �sb can be reached faster or

slower over a time interval Dt and is defined as:

�sbðtÞ ¼¼

0 for t , tf
sb

Dt
ðt 2 tf Þ for tf # t , tf þ Dt

sb for t $ tf þ Dt

8>><
>>: ð20Þ

By properly selecting values for the eight modeling parameters

(Ks, Kd, Kn, Dt, sb, smax, smin, and tf) the following types of

sensor failures can be simulated:
. biased sensor output with variable rate;
. drifting output;
. constant or saturated output; and
. increased output noise.

For example, normal operation corresponds toKs ¼ 1,Kd ¼ 0,

Kn ¼ 1, and sb ¼ 0. A roll rate gyro biased by 108/s reaching

this bias over 1.5 s is modeled if Ks ¼ 1, Kd ¼ 0, Kn ¼ 1,

sb ¼ 10, and Dt ¼ 1:5:

6. Failure detection and identification

The actuator and sensor FDI scheme was designed to address

failures on any of the four aerodynamic control paired

surfaces and on any of the angular rate sensors. Without any

loss of generality, the FDI scheme can be modified to deal

with different actuator and/or sensor failures. The scheme is

based on the use of neural estimators interfaced with

correlation functions of the aircraft angular rates.
Particular emphasis is placed on the differentiation between

sensor and actuator failures. Within each category, the

scheme can determine which element has failed. Specifically,

for an actuator failure, the scheme can specify whether it is a

stabilator, aileron, canard, or rudder failure whereas in the

event of a sensor failure the scheme needs to correctly detect

and isolate the failed sensor.
The general actuator and sensor FDI scheme can be

divided into the following tasks:
. preliminary detection (a failure of an unspecified primary

control surface or sensor is detected);
. detection (the failure is associated to a primary control

surface or sensor);
. preliminary identification (this phase applies only to

control surface failures and consists of evaluating the

failure to be a longitudinal- or lateral-directional failure);

and
. identification (if previously detected as a control surface

failure, the failure is identified to be a stabilator, canard,

aileron, or rudder failure; if previously detected as a sensor

failure, it is identified to be a roll, pitch, or yaw rate sensor

failure).

The high-level logical block diagram of the actuator and

sensor FDI scheme is shown in Figure 4.
The actuator and sensor FDI scheme relies primarily on

two sets of NNs. The first one, referred to as the main neural

network (MNN), generates estimates of the angular rates

ðp̂MNNðkÞ; q̂MNNðkÞ; and r̂MNNðkÞÞ at time k, using

measurements from time instant k 2 1 to k 2 m. The inputs

to the MNNs include all gyro measurements, angle of attack,

sideslip angle and control surface deflections. The second set,

the decentralized neural networks (DNNs), also generates

angular rate estimates ðp̂DNNðkÞ; q̂DNNðkÞ; and r̂DNNðkÞÞ but
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does not use as an input measurements from the respective

gyro. For both the MNNs and DNNs, combinations of an

ADALINE and EMRAN NN working in parallel have been

implemented on each channel. This approach was adopted to

achieve desirable performance in the presence of large non-

linearities – using the adaptation capabilities of the EMRAN

NNs – without the computational burden on operation in

areas with reduced non-linearities – using the simpler

ADALINE NNs.
Within the scheme, the estimates from the MNN are

compared with the actual measurements at time k ( p(k), q(k),
and r(k)) to define the main quadratic estimation error

(MQEE) parameter:

MQEEðkÞ ¼ 1

2
½ð pðkÞ2 p̂MNNðkÞÞ2 þðqðkÞ2 q̂MNNðkÞÞ2

þðrðkÞ2 r̂MNNðkÞÞ2�:
ð21Þ

Additionally, a NN output quadratic estimation error

(OQEE) parameter is defined by comparing the estimates

from the MNN and the individual DNNs:

OQEEðkÞ ¼ 1

2
½ðp̂DNNðkÞ2 p̂MNNðkÞÞ2 þ ðq̂DNNðkÞ

2 q̂MNNðkÞÞ2 þ ðr̂DNNðkÞ2 r̂MNNðkÞÞ2�:
ð22Þ

Furthermore, for each channel, a decentralized quadratic

estimation error (DQEE) parameter is computed as the

difference between the outputs of the DNN and the actual

measurements:

DQEExðkÞ ¼
1

2
ðx̂DNNðkÞ2 xðkÞÞ2 where x ¼ p; q; r: ð23Þ

These parameters, individually and in weighted combinations

with the correlation functions of the angular rates, are used to

formulate criteria for all the four phases of the actuator and

sensor FDI process based on constant and floating thresholds.

More details on the development and performance of the FDI

scheme are presented by Napolitano et al. (2000) and

Perhinschi et al. (2006b, 2007).

7. User interface

7.1 General simulation setup

A set of user-friendly GUI menus are designed for setting up

the simulation scenarios. The information to be provided

through these menus can be organized in three main

categories, that is the control laws setup, the simulation

input module, and the output module, as shown in Figure 5.

7.2 Control laws setup module

For both the indirect and direct adaptive control laws, the

user can select to simulate the following combinations of

structural components:
. control laws only;
. control laws and actuator FDI scheme;
. control laws and sensor FDI scheme; and
. control laws and integrated actuator and sensor FDI

scheme with or without sensor failure accommodation.

The parameters of the FDI schemes are provided through a

Matlab script file.

7.2.1 Indirect adaptive control laws
The user can select among several alternative architectures

allowing to focus on specific research issues. For example, one

Figure 4 Integrated sensor and actuator FDI scheme
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scenario features the aircraft at open-loop conditions connected

to the PID block such that PID issues can be isolated and
investigated. Another scenario includes the SOFFT controller
featuring real time parameter updating based on PID results

once specific convergence criteria are met. An online learning
NN can also be used to support the updating of the controller
parameters at post-failure conditions.
Within the indirect adaptive control laws class, the user can

select among the following alternatives:
. decoupled or coupled SOFFT control laws;
. frequency or time domain representation for the PID

parameters;
. matrix approach or derivatives approach for the PID

algorithm;
. variable list of parameters to be estimated and updated

within the control laws; and
. several PIDconvergence criteria and associated parameters.

Examples of the interactive menus developed for the setup of
the indirect adaptive control laws are shown in Figure 6.

7.2.2 Direct adaptive control laws
Within the direct adaptive control laws class, the user can
select to maintain the parameters of the NLDI fixed at a

default initial flight condition or to update these parameters at

specified time intervals. The updated values can be computed

online or provided by PTNNs. The default initial flight

condition can be modified in the initial data Matlab script file.

Depending on the type of neural augmentation, the

alternative configurations consist of:
. NLDI only.
. NLDI and EMRAN NN.
. NLDI and SigmaPI NN.
. NLDI and SHL NN.

Examples of the interactive menus developed for the setup of

the direct adaptive control laws structure are shown in Figure 7.

7.3 Simulation input module

The pilot input on each of the four control channels

(longitudinal, lateral, directional, and throttle) can be

selected to be provided online using the joystick or as pre-

recorded (or otherwise built) stick displacement time

histories. The pilot input menu is shown in Figure 8.
Fromthemain control laws setupmenus (Figures 6 and7), the

user can select between nominal and failure flight conditions. If

failure conditions are selected, then it must be specified whether

Figure 5 General structure of the user interface

Select Class of Control Laws

1) Indirect Adaptive Control Laws 2) Direct Adaptive Control Laws

Simulation Input Module

Select Pilot Input

1) Interactive Pilot Input on All Channels (Joystick)
2) Pre-recorded Pilot Input on All Channels
3) Mixed Pilot Input (Pre-recorded and Joystick)

Select Failure Scenario

1) Nominal Flight Conditions (No Failures)
2) Actuator Failure
3) Sensor Failure

Simulation Output Module
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1) On-line Plots of Selected Variables Time Histories
2) Time Histories of Selected Variables saved to Matlab
Workspace)

Select Architecture and Parameters of
Indirect Adaptive Control Laws

1) Select SOFFT Structure and Parameters
2) Select PID Structure and Parameters
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the failure affects a primary control surface or a sensor. Should

the user select actuator failure conditions, the user can set the

different failure parameters in the control surface failure

conditions menu (Figure 9). In fact, in this menu the user can

select among failure on different control surfaces and among

jammed control, missing surface or both; furthermore, jammed

in current position or in a user-selected position. Additional

failure parameters include failure occurrence time, percentage

missing, and jamming position. Should the user select sensor

failure conditions, the user is then directed to another interactive

menu to select the particular gyro affected by the failure, the type

of failure, and the moment of occurrence.

Figure 6 Setup menus for the structural characteristics of the indirect adaptive control laws

Figure 7 Setup menus for the structural characteristics of the direct adaptive control laws

Figure 8 Pilot input setup menu Figure 9 Setup menu for actuator failure type and parameters
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7.4 Simulation output module

The user has the following options to handle the simulation

outputs:
. time histories for the variables of interest (saved to Matlab

workspace or to files on disk);
. visualization of variables during or after the simulation

using Simulink scopes; and
. pop-up warnings for inconsistent user input values and as

a result of FDI.

The user can organize the information to be saved for post-

simulation processing and analysis using the menu shown in

Figure 10. From the visualization menu shown in Figure 11,

the user can establish the variables to be monitored during

the simulation. This menu is kept active throughout the

simulation allowing visualization of variables after the

simulation as well.
The menus in Figures 10 and 11 are essentially gateways to

additional options. In general, the user is given the

opportunity to access all relevant parameters such as the

aircraft state and control variables, the output and parameters

of the control laws, the pilot input and its intermediate
processing within the control laws, the tracking errors and

their statistics, the S&AFDI parameters, the estimated and

actual values of the stability and control derivatives (for
indirect adaptive architectures), NN inputs, outputs, and

adaptive weights (for direct adaptive architectures).
Figures 12 and 13 show the general graphics of the

simulation environment, which are based on AVDS views and

Simulink scopes for two distinct cases. Figure 12 shows
results from a simulation at nominal flight conditions with the

indirect adaptive control laws featuring decoupled SOFFT

control laws, time domain derivations, and stability and
control derivatives estimation. The purpose of this test was to

analyze the performance and convergence of the PID process,

which is one of the most important issues related to this type
of control laws architecture. For example, the scope at top left

shows the variation of the estimated values of CZa, which is

the non-dimensional derivative of the aerodynamic force
along the vertical aircraft body axis with respect to the angle of

attack. This parameter plays an important role within the

control laws. It can be seen that after a transient of about 3 s
the estimate converges to the actual value – about 24 – of

the derivative.
Results from a simulation with direct adaptive control laws

featuring NLDI augmented with SHL NN without PTNN

updating are shown in Figure 13. A left stabilator failure occurs
at t ¼ 20 s when the control surface is locked at trim þ88. The

purpose of this test was to analyze the performance of the

actuator FDI scheme and the general failure accommodation
capabilities of the direct adaptive control laws.
The scopes bar in the middle of Figure 13 shows the

variation of FDI parameters based on correlations of aircraft

angular rates. It can be seen that, immediately after the

occurrence of the failure, the detectors based on correlation
between pitch rate and both roll and yaw rate experience

significant increase as a result of coupling between channels,

which is an important fingerprint of a stabilator failure. In
fact, the FDI scheme detects and correctly identifies the

failure as a stabilator failure and produces the pop-up warning

shown at the right bottom of the Figure 13. The control laws
are designed to follow the output of an ideal reference model

for optimal handling qualities; therefore, the errors in tracking

the output of this reference model are the metric for control
laws performance evaluation. The scopes at the left side of

Figure 13 show the reference model output and the actual

values of the angular rates. There is an excellent match before
the failure. A significant discrepancy occurs at the moment of

the failure. After a short transient, the NN augmentation is

capable to “learn” the new operational conditions and provide
the necessary compensation to maintain good tracking

performance.

8. Conclusions

A Matlab/Simulink-based simulation environment has been

developed for the design and testing of indirect and direct

adaptive flight control laws with fault tolerant capabilities to
detect, identify, and accommodate failures of aircraft actuators

and sensors.
Indirect adaptive flight control laws are implemented based

on an optimal controller and frequency domain online

Figure 10 Setup of time histories output

Figure 11 Setup of simulation output visualization
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Figure 12 WVU IFCS simulation environment graphics – indirect adaptive flight control laws

Figure 13 WVU IFCS simulation environment graphics – direct adaptive flight control laws
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parameter estimation. Direct adaptive flight control laws

consist of NLDI performed at a reference nominal flight

condition augmented with artificial NNs.
A detailed GUI for simulation scenario setup allows the

selection of control laws architecture, components, and

parameters as well as the general flight conditions including

different failure scenarios.
Owing to its modularity, flexibility, and rapid reconfiguration

capabilities of the major components, the simulation

environment provides excellent means for fault-tolerant

control system design, testing, comparison, and evaluation.
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